+7 (495)  223-00-32   +375 (17) 303-22-22
info@sorbis-group.com

8 (800) 700-28-30
звонок бесплатный

Осушители и адсорбенты для осушки сжатого воздуха

Для каждой области промышленности количественное описание допустимого содержания влаги в сжатом воздухе определяет всемирно принятый стандарт DIN ISO 8573-1. Исходя из данных, указанных в ISO, можно сказать, что осушение сжатого воздуха до 4-го класса (точка росы +30°С) гарантирует отсутствие конденсата в воздушной системе до того момента, пока сжатый воздух не охладится до +30°С.
Во всех областях промышленности, практически на любом предприятии применяется сжатый воздух. Для получения сжатого воздуха используется компрессор, который сжимает атмосферный воздух. Как известно, воздух, используемый компрессором, имеет влажность от 30 до 90%. При сжатии его выделяется избыточная влага. Попадание такого количества влаги в оборудование может привести к коррозии отдельных частей установки и поломке работающей системы в целом, что приводит к вынужденному простою предприятия и расходу немалых сумм на ремонт испорченного оборудования. Поэтому очень важным этапом при работе с пневматическим оборудованием является подготовка сжатого воздуха, т.е. его осушка. (См.табл. 1)

Табл.1 Классы чистоты по DIN ISO 8573 1: 2001

Класс

Содержание твердых примесей, шт/м³, не более

Тоска росы
под давлением,
°C, не выше

Содержание
масла, мг/м³,
не более

Размер, мкм

менее 0,1

от 0,1 до 0,5

от 0,5 до 1,0

от 1,0 до 5,0

0

Класс 0 зарезервирован под более высокие требования, оговаривается специально

1

не огов.

100

1

0

-70

0,01

2

не огов.

100000

1000

10

-40

0,1

3

не огов.

не огов.

10000

500

-20

1

4

не огов.

не огов.

не огов.

1000

+3

5

5

не огов.

не огов.

не огов.

20000

+7

не огов.

6

Размер <5 мкм, концентрация <5 мг/м³

+10

не огов.

Необходимо отметить, что осушение сжатого воздуха до 3 класса (точка росы -20°С в климатических условиях России не является достаточным для защиты воздушной системы. Этот класс больше подходит для стран с более «мягкими» климатическими условиями, например для стран Западной Европы. Учитывая климат, на промышленно развитой территории России необходимо отметить особую значимость 2-го и 1-го классов. (Точка росы соответственно -40°С и -70°С).

Существует несколько видов осушителей сжатого воздуха. По принципу работы осушитель воздушной системы можно разделить на два основных: рефрижераторные и адсорбционные. Принцип работы осушителей рефрижераторного типа такой же, как в обычном холодильнике или кондиционере. В них используется в качестве хладагента фреон. Содержащаяся в сжатом воздухе влага конденсируется и удаляется. Наиболее распространенная точка росы в таком осушителе +3°С.

Главный недостаток такого осушителя - это ограниченная возможность снижения температуры точки росы.

Для надежной защиты пневматической системы предприятий необходимо применять осушители адсорбционного типа, которые позволяют получить точку росы сжатого воздуха -20, -40, -70°С и ниже.

Принцип действия адсорбционного осушителя представлен на рисунке.

схема адсорбераФото адсорбера

Осушитель состоит из двух адсорберов (башен), заполненных адсорбентом и закрепленных на станине. Сжатый воздух загрязнен твердыми частицами, конденсатом и каплями масла.

Сначала сжатый воздух проходит через микрофильтр, который удаляет твердые и жидкие частицы размером до 0.01 мкм.

После фильтрации 100% насыщенный сжатый воздух поступает в нижний контрольный блок (1), где он направляется в один из адсорберов (А). Для того чтобы обеспечить правильное распределение по адсорберам, адсорбент удерживается на месте с помощью самоочищающейся сетки. Во время фазы адсорбции, влага, содержащаяся в сжатом воздухе, поглощается адсорбентом. Затем, сухой и чистый воздух подается в верхний контрольный блок (поз. 5/6).

В это время адсорбер В регенерируется. Это достигается пропусканием небольшого потока осушенного воздуха через сопло, где он расширяется до атмосферного и проходит через емкость В сверху вниз (поз. 7). Расширение до атмосферного давления позволяет осушенному воздуху перенести влагу к основанию адсорбера В. Затем воздух проходит через выходной клапан (4) и глушитель (8).

Переход от одного адсорбера к другому обеспечивается контролируемым циклом. Через заданный промежуток времени, выходной клапан 4 закрывается. Это позволяет давлению в адсорбере В сравняться с давлением в адсорбере А. Главный клапан на адсорбере закрывается, после чего воздух поступает в уже регенерированный адсорбер В (поз. 3). В это время выходной клапан на адсорбере А открывается, в результате чего давление снижается и начинается процесс регенерации.

При прохождении обрабатываемого воздуха через адсорбер в него могут попасть твердые частицы адсорбента, которые опасны для конечных пользователей. Для их улавливания на выходе из адсорбера необходимо установить еще один фильтр со степенью фильтрации 1 мкм.

Для восстановления адсорбента на практике используются два способа: холодная и горячая регенерация.

При холодной регенерации часть потока сжатого осушенного воздуха направляется в сосуд с адсорбентом, где он поглощает и выносит влагу. Этот воздух – отработанный, и в систему он больше не возвращается. Поэтому при проектировании пневмосистемы осушитель учитывают в качестве дополнительного потребителя сжатого воздуха. Чередующиеся циклы регенерации длятся от 3 до 10 минут.

Конструкция осушителей с холодной регенерацией надежна и проста, и они могут быть спроектированы для достижения более низких (до 80°С) значений точки росы, чем осушители, использующие для восстановления адсорбента горячий способ. Однако они нуждаются в большом объеме сжатого воздуха, что приводит к увеличению эксплуатационных расходов. Обычно на регенерацию адсорбента расходуется около 15% от номинальной производительности осушителя с холодной регенерацией, что делает такие установки крайне дорогими в эксплуатации.

При горячей регенерации для осушки адсорбента используется горячий воздух. Адсорбционные осушители с горячей регенерацией, как правило, имеют самостоятельную систему продувки адсорбента специально для того, чтобы исключить потребление сжатого воздуха от компрессора. При этом процессе, в зависимости от типа адсорбента, необходима температура от 150 до 300°С. Верхний предел использования осушителей с горячей регенерацией составляет 40-45°С. Адсорбент может выдержать от 2000 до 4000 циклов регенерации. Промежуток времени между автоматическими циклами регенерации составляет от 4 до 8 часов.

В результате при использовании осушителей с горячей регенерацией за счет отсутствия потерь сжатого воздуха можно подбирать меньший по производительности компрессор и единственными потерями будут потери на нагрев воздуха при регенерации, что делает систему очень дешевой в эксплуатации.

Какой (или какие) из этих сортов адсорбентов используются в конкретном осушителей определенного производителя, зависит в большой степени от объективных факторов (тип регенерации, требуемая температура точки росы, температура и давление и др.), и в меньшей степени от предпочтений и целей производителя. Однако, обычно, в осушителях сжатого воздуха с холодной регенерацией используется или активированный оксид алюминия, или молекулярные сита, с горячей регенерацией  влагостойкий силикагель внизу адсорбента и обычный в верхней части.

Если требуется точка росы выше - 40°С, как правило, используют активированный оксид алюминия. В том случае, когда требуется точка росы ниже - 40°С рекомендуется применять цеолит марки NaA.

Как известно, силикагель быстро разрушается при воздействии капельной влаги, что необходимо учитывать при использовании его в адсорбентах данного типа. Если же выбор все таки падает на применение в адсорбере силикагеля, то в нижнем (лобовом) слое необходимо использовать водостойкий силикагель, а остальную часть адсорбера заполнить обычным силикагелем КСМГ.

Адсорбционные осушители находят свое применение на таких производствах, как : упаковочное производство, выдув ПЭТ, стекла, в том числе бутылочного, энергетические установки, окрасочные производства, стоматология, прочие лаборатории, в том числе медицинские и химические, контрольно-измерительная аппаратура, конвейеры, станки с ЧПУ, фармацевтика, автомобильные производства, производства с применением лазеров, распылительного оборудования, и это - далеко не полный перечень сфер применения.

Литература.

1. Стандарт качества сжатого воздуха DIN ISO 8573-1:2001.
2. Кельцев Н.В. « Основы адсорбционной техники» 2 изд., М., 1984г.
3. Лысяков Н.Н., Денисенко И.П. «ОСУШКА СЖАТОГО ВОЗДУХА», 1-я Интернет-конференция «Грани науки- 2012г»,г.Балаково, Россия.
4. Н.И. Родина, И.М. Рябинина, Н.С. Шевцова, В.И. Юрьева « Оптимизация технологии осушки воздуха в промышленных блоках УОВ-30, УОВ-100 с использованием природного цеолита», ОАО «Фосфорит», г.Кингисепп.